Real Numbers Definition Examples Properties Symbol Chart

1. Euclid's Division lemma:- Given Positive integers a and b there exist unique integers q and r satisfying
$\mathrm{a}=\mathrm{bq}+\mathrm{r}$, where $0 \leq \mathrm{r}<\mathrm{b}$, where $\mathrm{a}, \mathrm{b}, \mathrm{q}$ and r are respectively called as dividend, divisor, quotient and remainder.
2. Euclid's division Algorithm:- To obtain the HCF of two positive integers say c and d , with c>0, follow the steps below:
Step I: Apply Euclid's division lemma, to c and d, so we find whole numbers, q and r such that c $=\mathrm{dq}+\mathrm{r}, 0^{\leq} \leq r<d$
Step II: If $r=0, d$ is the HCF of c and d. If $r \neq 0$, apply the division lemma to d and r.
Step III: Continue the process till the remainder is zero. The divisor at this stage will be the required HC
3. The Fundamental theorem of Arithmetic:-

Every composite number can be expressed (factorised) as a product of primes, and this factorization is unique, apart from the order in which the prime factors occur.
Ex.: $24=2 \times 2 \times 2 \times 3=3 \times 2 \times 2 \times 2$
Theorem: LET x be a rational number whose decimal expansion terminates. Then x can be expressed in the form
of $\frac{p}{q}$ where p and q are co-prime and the prime factorisation of q is the form of $2^{n} \cdot 5^{m}$, where n, m are non negative integers.

$$
\text { Ex. } \frac{7}{10}=\frac{7}{2 \times 5}=0.7
$$

1. If the H C F of 657 and 963 is expressible in the form of $657 x+963 x-15$ find x.Definition (Ans:x=22)
Ans: Using Euclid's Division Lemma

$$
\begin{aligned}
\mathrm{a} & =\mathrm{bq}+\mathrm{r}, \mathrm{o} \leq \mathrm{r}<\mathrm{b} \\
963 & =657 \times 1+306 \\
657 & =306 \times 2+45 \\
306 & =45 \times 6+36 \\
45 & =36 \times 1+9 \\
36 & =9 \times 4+0
\end{aligned}
$$

$$
\therefore \operatorname{HCF}(657,963)=9
$$

$$
\text { now } 9=657 x+963 \times(-15)
$$

$$
657 x=9+963 \times 15
$$

$=9+14445$
$657 \mathrm{x}=14454$
$\mathrm{x}=14454 / 657$

$$
x=22
$$

2. Express the GCD of 48 and 18 as a linear combination. (Ans: Not unique)

$$
\begin{aligned}
& \mathrm{A}=\mathrm{bq}+\mathrm{r} \text {, where } \mathrm{o} \leq \mathrm{r}<\mathrm{b} \\
& 48=18 \times 2+12 \\
& 18=12 \times 1+6 \\
& 12=6 \times 2+0 \\
& \therefore \text { HCF }(18,48)=6 \\
& \text { now } 6=18-12 x 1 \\
& 6=18-(48-18 \times 2) \\
& 6=18-48 \times 1+18 \times 2 \\
& 6=18 \times 3-48 \times 1 \\
& 6=18 \times 3+48 \times(-1) \\
& \text { i.e. } 6=18 x+48 y \\
& \therefore \quad x=3, y=-1 \\
& 6=18 \times 3+48 \times(-1) \\
& =18 \times 3+48 \times(-1)+18 \times 48-18 \times 48 \\
& =18(3+48)+48(-1-18) \\
& =18 \times 51+48 \times(-19) \\
& 6=18 x+48 y \\
& \therefore \quad x=51, y=-19
\end{aligned}
$$

